PHYSICAL CHEMISTRY

DPP No. 16

Total Marks: 37

Max. Time: 43 min.

Topic: Atomic Structure

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.3	(3 marks, 3 min.)	[9, 9]
Multiple choice objective ('-1' negative marking) Q.4	(4 marks, 4 min.)	[4, 4]
Subjective Questions ('-1' negative marking) Q.5,6,8,9	(4 marks, 5 min.)	[16, 20]
Match the Following (no negative marking) (2 \times 4) Q.7	(8 marks, 10 min.)	[8, 10]

- 1. If numerical value of mass and velocity are equal for a particle, then its de-Broglie wavelength in terms of K.E.
 - (A) $\frac{mh}{2K.E.}$
- (C) both are correct
- (D) none is correct.
- 2. A wavelength of 400 nm of electromagnetic radiation corresponds to:
 - (A) frequency (v) = $7.5 \times 10^{14} \text{ Hz}$
- (B) wave number($\frac{1}{V}$) = 2.5 × 10⁶ m⁻¹.
- (C) momentum of photon = $1.66 \times 10^{-27} \text{ kg ms}^{-1}$ (D) all are correct values.
- 3. In one experiment, a proton having initial kinetic energy of 1 eV is accelerated through a potential difference of 3 V. In another experiment, an α-particle having initial kinetic energy 20 eV is retarded by a potential difference of 2 V. The ratio of de-Broglie wavelengths of proton and α -particle is :
 - (A) $2\sqrt{6}$: 1
- (B) 8:1
- (C) 4:1
- (D) $2\sqrt{2}$: 1
- 4.* When photons of energy 4.25 eV strike the surface of a metal A, the ejected photoelectrons have maximum kinetic energy (K.E)_A and de-Broglie wavelength is λ_A . The maximum kinetic energy of photoelectrons liberated from another metal B by photons of energy 4.7 eV is $(KE)_B$, where $(KE)_B = (KE)_A -1.5$ eV. If the de-Broglie wavelength of these photoelectrons is λ_B (= $2\lambda_\Delta$), then :
 - (A) The work function of metal A is 2.25 eV
- (B) The work function of metal B is 4.20 eV

(C) $(KE)_A = 2 \text{ eV}$

- (D) $(KE)_B = 2.75 \text{ eV}$
- Average life time of an electron in hydrogen atom excited to n = 2 state is 10^{-8} s. Find the number of 5. revolutions made by the electron on the average, before it jumps to the ground state.
- 6. The ionisation energy of He⁺ ion is 19.6 × 10⁻¹⁸ J per ion. Calculate the energy of the first stationary state of Li²⁺ion.
- 7. Match the following:

Column (I)	Column (II)
(A) Binding energy of 5 th excited state of Li ²⁺ sample	(p) 10.2 V
(B) I st excitation potential of H-atom	(q) 3.4 eV
(C) 2 nd excitation potential of He⁺ ion	(r) 13.6 eV
(D) I.E. of H-atom	(s) 48.4 V

- 8. The IP of H-atom is 13.6 V. It is exposed to electromagnetic waves of wavelength 1026 Å and then, it gives out induced radiations. Find the wavelength of all possible induced radiations.
- 9. The ionization energy of a Hydrogen like species is 4 Rydberg. What is the radius of the first orbit of this atom ? (Given: Bohr radius of hydrogen = 5.3×10^{-11} m; 1 Rydberg = 2.2×10^{-18} J)

3.

DPP No. #16

1.

2. (D)

(C)

4.* (A,B,C)

5.

$$8.2 \times 10^{6}$$

6.

$$-4.41 \times 10^{-17} J$$

7.

$$[A-q]$$
; $[B-p]$; $[C-s]$; $[D-r]$.

8.

I induced = 1026 Å, II induced = 1216 Å, III induced = 6568 Å

9.

2.65 × 10-11 m.

nts & Solutions

DPP No. #16

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{v^2}$$

but
$$v^2 = \frac{2KE}{m}$$

but
$$v^2 = \frac{2KE}{m}$$
 therefore $\lambda = \frac{hm}{2KE}$

2.

$$\Rightarrow$$

Use
$$C = \upsilon \lambda$$
 \Rightarrow $\overline{u} = \frac{1}{\lambda}$

3.

3. K.E. proton = 1 + (1) (3) = 4 eV :
$$\lambda_p = \frac{h}{\sqrt{2m_p(KE)_p}}$$
 & KE $_{\alpha-particle} = 20 - (2)$ (2) = 16 eV : $\lambda_{\alpha} = \frac{h}{\sqrt{2m_{\alpha}(KE)_{\alpha}}}$

$$\therefore \frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{m_{\alpha}(KE)_{\alpha}}{m_p(KE)_p}} = \sqrt{\frac{4 \times 16}{1 \times 4}} = \frac{4}{1}$$

4.*

$$4.25 = (W_0)_A + (K.E.)_A$$

$$4.70 = (W_0)_B + (K.E.)_A - 1.5$$

So
$$(W_0)_B - (W_0)_A = 0.45 + 1.5$$

= 1.95

Now,
$$\lambda_B = 2\lambda_A$$

$$\frac{h}{\sqrt{2m(K.E)_B}} = \frac{2h}{\sqrt{2m(K.E)_A}}$$

So
$$(K.E)_A = 4 (K.E)_E$$

So
$$(K.E)_A = 4 (K.E)_B$$

 $4.25 - (W_0)_A = 4 [4.7 - (W_0)_B]$
 $4(W_0)_B - (W_0)_A = 14.55$

$$4(W_0)_B - (W_0)_A = 14.55$$


So
$$(W_0)_B = 4.2eV$$

So
$$(W_0)_A = 2.25 \text{ eV}$$

$$(K.E.)_A = 2eV$$

$$(K.E)_{B} = 0.5eV$$

5. number of revolutions per second

$$= \frac{V}{2\pi r} = \frac{2.18 \times 10^6 \left(\frac{Z}{n}\right)}{2 \times 3.14 \times 0.529 \times \left(\frac{n^2}{Z}\right) \times 10^{-10}} = \frac{2.18 \times 10^6 \left(\frac{1}{2}\right)}{2 \times 3.14 \times 0.529 \times \left(\frac{2^2}{1}\right) \times 10^{-10}}$$

Number of revolution in 10⁻⁸ second =
$$\frac{2.18 \times 10^6 \left(\frac{1}{2}\right)}{2 \times 3.14 \times 0.529 \times \left(\frac{2^2}{1}\right) \times 10^{-10}} \times 10^{-8} = 8.2 \times 10^6.$$

6. The ionisation energy of He⁺ is 19.6×10^{-18} J.

$$\therefore$$
 Energy of the first orbit of He⁺ (Z = 2) = 19.6 × 10⁻¹⁸ J.

$$\therefore \qquad \text{Energy of the first orbit of H}^+(Z=1) = \frac{19.6 \times 10^{-18}}{4} \text{ J}$$

.. Energy of the first orbit of Li²⁺ (Z = 3) =
$$\frac{19.6 \times 10^{-18}}{4} \times 9 = 4.41 \times 10^{-17} \text{ J}.$$

7. (A) Transition n ® 6 to n ® ∞ For Li2+ sample

(B) Transition
$$n \to 1$$
 to $n \to 2$ For H-atom sample

(C) Transition
$$n \rightarrow 1$$
 to $n \rightarrow 3$ For He⁺ sample

(D) Transition
$$n \to 1$$
 to $n \to \infty$ For H-atom sample

8.
$$\Delta E = \frac{12400}{1026} = 12.09 \text{ eV}.$$

So,
$$\Delta E = E_3 - E_1$$
.

Hence, induced radiations will be correspond to following energy transition $E_3 \rightarrow E_1$, $E_3 \rightarrow E_2$ and $E_2 \rightarrow E_1$.

9.
$$-13.6 \frac{Z^2}{n^2} = 4R = 4 \times 2.2 \times 10^{-18} \text{ J}.$$

$$Z^2 = \frac{4 \times 2.2 \times 10^{-18} \text{ J}}{13.6 \times 1.6 \times 10^{-19}} = 4$$
; $Z = 2$.

$$r = 0.529 \frac{n^2}{Z} \times 10^{-10} \text{ m}.$$
 $r = 0.529 \times 10^{-10} \times \frac{1}{2} = 2.645 \times 10^{-11} \text{ m}.$

